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Abstract

With the world looking for renewable energy resources to displace the various
other methods of power generation such as oil and natural gas, there is a strong
case to be made for geothermal power generation. Geothermal energy is a
virtually renewable and clean source of energy. Also the skill-set required to
build and maintain geothermal plants is very similar to the skill-set of oil and
gas well workers which this type of energy generation is poised to replace. One of
the major reasons geothermal energy is not more common in the United States
is because there simply is not a whole lot of data to determine just how effective
it could be. With that said, the push for clean energy has generated more
research into the possibility of geothermal power. The Southern Methodist
University has aggregated a massive data set of oil and gas wells across the
country including temperature measurements of the bottom of each well. With
this data I intend to expand my skills in the topic of statistical spatial analysis
and determine how predictable the temperature at the bottom of a well can
be given it’s location. In order to be used as a tool for the construction of
geothermal power production facilities.

Introduction

A general understanding of the way in which geothermal power is generated
is necessary to be able to understand and work with the existing data about the
heat in the Earth’s crust. Geothermal power generation relies on harvesting the
heat which rises up through the crust from deep within the planet. This form
of energy is considered virtually unlimited, and does not produce any harmful
by-products.

Figure 1: How a geothermal plant works. [5]
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There are many different specific methods to be able to collect the energy
from the crust, but Figure 1 shows a common setup for a geothermal power
plant. It is important to note here that Figure 1 shows that water is turned
to steam to drive a turbine. However, using water requires that the ground
is more than 100°C. This constraint has severely limited the possible locations
which are suitable for power plants in the past. Recently new methods have
been developed which are not constrained by this 100°C limit. This can open
up vastly more area which is suitable for geothermal energy. However, it can be
generally assumed that higher ground temperatures will lead to a more profitable
power plant.

Therefore, the largest roadblock to setting up and building a geothermal
power generation infrastructure stems from the uncertainty about the tempera-
tures beneath our feet. Since the 1970s many different methods have been used
to model this uncertainty. Most of these studies focus on hydro thermal basins
like the ones found in Yellowstone National park. This is because data about
these areas is relatively easy to collect and the profitability of power generation
is considered high [10]. This paper will instead focus on modeling heat flow in
areas which have a large amount of oil and natural gas well drill sites. Although
these areas may not be considered the most profitable locations for geothermal
power, they will undoubtedly play a key role in reducing the world’s dependency
on fossil fuels.

Exploratory Data Analysis

The main data source in this paper is all the temperature measurements
taken at the bottom of well drill sites in the US from the Southern Methodist
University [1]. This data has been curated and compiled into a massive list of
more than 40,000 wells across the United States and in the Gulf of Mexico. The
first step to understanding this data was to visualize it. Importing the data into
R and generating a histogram plot of the temperatures yields the result shown
in Figure 2.
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Figure 2: Histogram of observed temperatures.

The observed temperature data shown in Figure 2 has a mean value of 67.3°C
and is heavily skewed to the left. Again the fact that most of the temperatures
are not more then 100°C does not rule them out as candidates for geothermal
power. Not only are new methods available which do not rely on boiling wa-
ter, but these measurements can be used to predict higher temperatures that
may occur at lower depths. The effect that the depth of the well has on the
temperature is shown in Figure 3.

Figure 3: As depth increases so does the temperature.

In fact the measured temperature at the bottom of these wells is merely a
metric used to calculate the amount of heat flowing towards the surface. The
measured temperature data can not be considered clean either. Most of the
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time these measurements are taken very soon after the hole was drilled. So
this measured temperature does not always accurately reflect the equilibrium
temperature (that is the temperature that would be observed if the well was
never drilled)[14]. Entire papers have been written to solve this very problem.
The widely regarded best method used to determine the equilibrium tempera-
ture measurement is to use a Horner plot [11]. Unfortunately this plot requires
multiple measurements of the temperature over time, and the data from SMU
only includes measurements at a single point in time. Another method to cor-
rect these temperatures was developed by William Harrison in his 1982 paper
[6]. This ’Harrison Correction’ is simply the second order polynomial function
of depth in meters shown in Equation 1. This equation was found by fitting
known equilibrium temperatures to observed temperatures from well drill sites
in Oklahoma.

∆T = −16.51 + 0.018z − 2.34E10−6z2 (1)

Here the ∆T is the change from the measured temperature to the equilibrium
temperature, and the value of z is the depth of the well in meters. Since this
data set contains the depths of each temperature observation, calculating the
equilibrium temperatures is as straight forward as writing a simple script in
Python which implements Equation 1.

Heat Flow Model

This temperature data is only the first step towards modeling the heat flow.
In order for a true idea of what is going on beneath the crust be be established,
we must know the surface heat flow. That is the movement of heat from the
interior of earth to the surface. However, in order to calculate this it is necessary
to know the average annual surface temperature of each of these locations. This
new measurement, along with the depth and the equilibrium temperature can
be used to calculate the heat flow using Equation 2.

dT

dz
=
TEQ − TS

z
(2)

Where TEQ is the previously calculated equilibrium temperature, TS is the
average annual surface temperature and z is the depth of the hole. In order to
implement this equation, the mean annual surface temperature was retrieved
for each state from the National Centers for Environmental Information [12].
Then the gradient dT

dz was calculated and added as a column to the data set.

QS = k(
dT

dz
) (3)

This new data can then be combined with the thermal conductivity of the
rock which is also provided by SMU. Combining these two measurements as
shown in Equation 3 where k is the thermal conductivity (provided in the SMU
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data set). Gives the true values for the heat flow towards the surface: QS .
Which will be analyzed to model a continuous prediction of the heat flow value
across the US.

Figure 4: A Histogram of the calculated Heat Flow values.

Figure 4 shows the results of the previous calculations. Unlike the histogram
of observed temperatures this distribution is centered more closely around its
mean. Also as a reference the average heat flow value for Iceland (an area with
huge geothermal resources) is around 100mW/m2 [2].

Figure 5: The Heat Flow values across the US, color coded by standard devia-
tions from the mean.
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Next, using ArcGIS Pro this data set was imported and overlaid onto a map
to see is there are any general trends which relate to the geographical area which
the data comes from. This led to an important discovery about the feasibility of
generating a statistical model which covers the entire United States. As shown
in Figure 5, not every state has well data than can be used. This means that only
areas which are near to large grouping of wells can be used to accurately model
heat flow. Uncertainty about the predicted heat flow value should increase in
areas with fewer data points.

Analysis

Analyzing this data in order to predict the value of the heat flow at any
given point presents some challenges. The main issue is that a method like
kernel density estimation which would be to model an unknown distribution on
a geographical surface will not be effective here. This is because the density of
the observations found in the data set does not have any bearing on the heat
flow. Because of this characteristic, a different approach is necessary to model
the distribution.

Natural Neighbor Model

The Natural Neighbor Model is a good fit to model this data, because it is
built for data which has varying densities [13]. The method of natural neigh-
bors was developed by Robin Sibson in the 1980s and continues to be a useful
way to interpolate discrete sets of points in space. This method uses a Voronoi
tessellation which is a way to divide the the area of study (the entire US) into
sets (or cells) where each set contains the points closest to a corresponding point
in the data. For this data set it is important to use geographical distance, to
account for the curvature of the earth. Using this metric of distance the tessel-
lation shown in Figure 6 can be generated using most GIS software packages.
This tessellation makes it possible to model the heat flow present in the earth’s
crust for arbitrary points which are not present in the data set. The Natural
Neighbor Model is very simple to implement as shown in Equation 4.

Q̂(φ, λ) =

n∑
i=1

f(φi, λi)
A(φi, λi)

A(φ, λ)
(4)
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Figure 6: Voronoi diagram of the US, generated with ArcGIS Pro.

The function Q̂(φ, λ) estimates the value of the heat flow at a given point in
the United states, here φ and λ are used in to represent a longitude and latitude
coordinate, respectively. The f(φi, λi) term is the known data about heat flow,

and the remaining term (A(φi,λi)
A(φ,λ) ) represents the weight given to the known

data in order to calculate the new value. This is why the Voronoi tessellation is
necessary. It can be helpful to think of the heat flow estimates at a given point
as a weighted average of the points around it. These weights are calculated
as a fraction of the area that a new cell would take from existing cells if the
newly calculated point were to get its own cell. This concept is demonstrated
in Figure 7. Using this method to generate the weights guarantees that for any
given point the weights will sum to 1. This way bias that would occur from
some points having more neighbors than others can be avoided.

Figure 7: Weights calculation [15].
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Putting all this together, a heat map of the entire region represented by the
data can be generated to allow for estimates of heat flow at any arbitrary point
in the US. This map is shown in Figure 8.

Figure 8: A map of predicted heat flow across the US.

Looking at Figure 8 it is clear that a map like this could be useful for indi-
viduals looking to find that best spots for geothermal power generation. There
are massive hot spots in the Western United States. This is near Yellowstone
National park and has been known to have vast geothermal resources. In fact
the entire Western US is on top of the fault line between the Pacific and North
American plates which are currently moving away from each other. Therefore
this area is a prime spot for geothermal power going into the future [3]. This
map also shows that there is a stripe of heat near that Appalachian mountain
chain. This area is known as a geothermal basin, there is much less research
into the geothermal potential of this area. However, according to this Natural
Neighbors model there is definitely potential here [13].

The usefulness of a model like this when it comes to the large upfront costs
of constructing geothermal power plants cannot be understated. However, this
model has its drawbacks. Because of the simplicity of the natural neighbors
calculation, there is no clear way to model the variability or uncertainty of the
predictions made by the model. On top of this, the model generated for this
data set did not account for varying depths. Modeling the depths is not entirely
necessary on this data set since nearly all of the data is for depths between 1
and 3 kilometers. But the extra dimension could provide more insight into the
areas of interest previously mentioned.
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Kriging

Kriging is another method to model data which has varying densities. Since
kriging works with the residuals of the data rather than the data itself it has
more advantages. The residuals of the data is the difference between a point’s
true value and the data’s mean. In this paper, the function r(φ, λ) as shown in
equation 5 will be used to represent the residual for a point in the US.

r(φ, λ) = Q(φ, λ)− E{fφ,λ} (5)

By predicting residuals, finding the variability of the predicted measurement
is built into this model. So it will be useful to see which areas have greater
uncertainty when generating a map of predicted values. This method can also
be considered better than natural neighbors because it aims to reduce bias in
the predictions even further. For example, consider a point that needs to have
its value predicted. If this point has three data points to the north but only one
to the south, it would make sense that the three to the north could be redundant
and should not have the same weight as the one point to the south. Kriging
can address this redundancy problem by attempting to minimize the estimation
variance. Estimation variance can be defined as the squared difference between
the predicted value and the unknown true value for the residuals. This is shown
in Equation 6.

E
(
[r̂(φ, λ)− r(φ, λ)]2

)
= ... (6)

= E
(
[r̂(φ, λ)]2

)
− 2E (r̂(φ, λ)r(φ, λ)) + E

(
[r(φ, λ)]2

)
Looking at the product in Equation 6 there are some substitutions which

can be made. We can replace the predicted residual function (r̂(φ, λ)) with
something similar to the predictor in Equation 4, but the weights term will be
made to be more generic (represented as the variable w) [9]. This substitution
is shown in Equations 7 and 8. To reduce clutter the location coordinates are
not shown as (φ, λ) and are simply represented as L for the location.

r̂(L) =

n∑
i=1

r(Li)wi (7)

E
(
[r̂(L)− r(L)]2

)
= E

(
[r̂(L)]2

)
− 2E (r̂(L)r(L)) + E

(
[r(L)]2

)
=

=

n∑
i=1

n∑
j=1

wiwjE{r(Li)r(Lj)} − 2

n∑
i=1

wiE{r(L)r(Li)}+ V ar(L)

=

n∑
i=1

n∑
j=1

wiwjC(Li, Lj)− 2

n∑
i=1

wiC(L,Li) + V ar(fL) (8)
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The final result of equation 8 includes the function C(LI , Lj) this is used
to represent the co-variance of the data at each of these locations. Since the
co-variance is present for all combinations of the data points, this term is what
addresses the redundancy problem stated earlier. Also the C(L,Li) is the co-
variance between the data at location Li and an unknown location. Finally the
last term V ar(FL) is simply the variance of the data set. These substitutions
are only made possible because the problem was re-framed to work with the
residuals of the data in equation 5. All that the kriging model aims to do is
to find the weights wj , which minimize equation 8 [9]. Therefore the best way
to do this is to take the partial derivative of equation 8 with respect to the
weights. By doing this and setting the result to be equal to zero, the weights
can be solved for by using the system of equations shown in 9.

n∑
j=1

wjC(Li, Lj)) = C(L,Li), i = 1, ..., n (9)

This is known as simple kriging, and it has one drawback that does not make
it ideal for this data set. This is because the mean of heat flow for the entire US
is used, but the US is large and the mean is not representative of any arbitrary
data point. Instead, a better approach is to calculate the mean locally for a set
of points near to the point that needs to be estimated. This approach is known
as ordinary kriging. The only other difference between simple and ordinary
kriging besides the locally calculated mean, is the additional constraint that all
of the weights must sum to one.

In order to implement kriging properly a variogram must be used to find
the parameters to use for the model [4]. The ArcGIS software will do this
automatically when it is asked to generate it’s own model. However, for the
purpose of demonstrating what a variogram is, one was generated separately
in R. The graph shown in Figure 9 is a semi-variogram where the semivariance
is modeled with a spherical function. The spherical function models how the
the semivariance increases as the distance between points grows. A spherical
function was chosen for this data because it’s linear slope appeared to fit the
data better than exponential or Gaussian functions. Initially the semivariance
(and variance) between points that are close together is expected to be small,
but not zero. This non-zero value is known as the ”nugget”, which comes from
when variograms were used to model the best places to dig for gold [9]. As the
distance increases it will eventually reach a value where the semivariance does
not change anymore, this value is known as the ”sill”. In this model the value for
the nugget is 96.03, and the sill value is 110.4. The range is another parameter
which describes the distance before the semivariance stops increasing. The value
in this model is 468km, or 290 miles. There is not a huge difference between the
a variogram and semivariogram. The semivariance is simply a measurement of
variance below the mean, and is often better suited for kriging applications [2].
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Figure 9: The SemiVariogram fitted in R.

Now that the semivariogram has been fit and and the process of kriging is
well understood, it is possible to generate a kriging model. This model can
be generated in ArcGIS Pro and then potential values can be interpolated for
arbitrary data points. The map generated is shown in Figure 10.

Figure 10: A map of predicted heat flow across the US. Using Kriging.
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A comparison of this map to the one generated using the natural neighbors
model shows that they are very similar. This similarity is reassuring, and shows
that both models have been implemented correctly. All of the hot spots that
were mentioned previously are also present in the kriging model. However,
there are some differences between the two maps. The natural neighbors map
appears to be less smooth. This phenomenon is most likely caused by the
differences between both methods. For the natural neighbors model the weights
are calculated using only the points which have adjacent voronoi cells. For
areas like Eastern Texas, where there is a lot of wells all very close together,
this causes the prediction of heat flow to vary quite a bit for small distances.
The kriging model is known to smooth out the data because it attempts to
reduce variability of any estimation. This is most likely the reason why the
kriging model generates smoother results.

Another difference between the two maps is that the kriging map in figure
10 seems to have these strange jagged areas which look like sheets of ice. An
example of what is meant is near the Appalachian Mountain range which juts
out into North Carolina. The reason for this is unknown, although it most likely
has to do with the lack of data in these areas. In fact, any area which does not
have a sufficient amount of data points should not be considered to have a good
prediction of surface heat flow. As previously mentioned, the kriging model
calculates the variability of the predictions it makes. The areas which have a
higher variability for predictions can be plotted onto a map and are shown in
Figure 11

Figure 11: The Kriging model’s calculations of expected variance.

The calculations of variance are not very surprising. The areas with the
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most amount of data points shown in figure 5 also have the lowest variance.
A map like this one could be very helpful for the construction of a geothermal
power plant. Essentially it would be very unwise to begin construction in any
of the areas colored red. In the future if more data was collected for these red
areas the variability of predicted heat flow would be expected to decrease, and
it would be feasible to consider those sites for power production as well.

Conclusion

The biggest hurdle towards a more sustainable and geothermal powered fu-
ture is the uncertainty and large upfront costs associated with geothermal power
plants. The initial costs of these plants can be very high, and when coupled with
the chance that there may not be a profit, many companies do not take the risk.
In this paper, hopefully the associated risk of starting construction in an un-
suitable area has been minimized. With the proper modeling and geo-statistical
techniques to analyze existing data, perhaps this risk could be brought so low
that more geothermal plants are constructed than oil or gas wells. However,
until that day comes every time a new oil or natural gas well is drilled the
modeling techniques described in this paper will get better at reducing the risks
associated with geothermal power plant construction. Oil and gas wells do not
need to be the only sources of data used to predict heat flow either. Measure-
ments of groundwater and even emerging remote sensing technologies may be
able to model surface heat flow in a more accurate manner [3].

In the next decade geothermal energy is expected begin to grow [7]. With the
recent invention of technologies which reduce the expenses for plant production
and more analysis of geospatial data this energy market is set up for success.
Many of the same skills used by technicians and engineers currently in the oil
and natural gas markets are applicable to geothermal drilling as well. In the last
decade Germany has seen a massive growth in their geothermal power market
from studies similar to this one [8]. Hopefully this paper and the methods
described in it can be applied to increase the growth of geothermal plants in the
US.
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